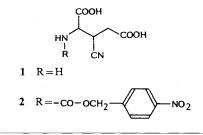
## β-CYANOGLUTAMIC ACID, A NEW ANTIFUNGAL AMINO ACID FROM A STREPTOMYCETE

NOBUAKI NARUSE, SATOSHI YAMAMOTO, HARUAKI YAMAMOTO, SHOICHIRO KONDO, SHINJI MASUYOSHI, KEI-ICHI NUMATA, YASUO FUKAGAWA and TOSHIKAZU OKI

Bristol-Myers Squibb Research Institute, 2-9-3 Shimo-meguro, Meguro-ku, Tokyo 153, Japan

(Received for publication November 27, 1992)

During the course of screening for new antifungal antibiotics, *Streptomyces* sp. K749-42 was found to produce  $\beta$ -cyanoglutamic acid (1) as a new amino acid which showed potent activity against *Candida albicans*. This paper briefly describes the fermentation, isolation, structure determination, and antifungal activity of 1.


Streptomyces sp. strain No. K749-42 was isolated from a soil sample collected in Philippines. A loopful spores of the strain was inoculated into a 500-ml Erlenmeyer flask containing 100 ml of seed medium composed of soluble starch 2%, glucose 0.5%, NZ-case 0.3%, yeast extract 0.2%, fish meat extract D30X 0.5% and CaCO<sub>3</sub> 0.3%, pH 7.0 before sterilization, and incubated at 28°C for 4 days on a rotary shaker (200 rpm). For production of the antibiotic, 5 ml of the seed culture was transferred to 100-ml of production medium (corn starch 2%, soy bean meal 3%, MgSO<sub>4</sub>·7H<sub>2</sub>O 0.33% and CaCO<sub>3</sub> 1%, pH 7.0) in a 500-ml Erlenmeyer flask and the fermentation was carried out at 28°C for 5 days. The antibiotic production was monitored by the liquid micro-dilution method using Candida albicans A9540 as tester. The broth filtrate (8 liters) was stirred with active charcoal (80g) for one hour and filtered. The filtrate was passed through a column of Dowex  $1 \times 2$  (350 ml, OH<sup>-</sup> form) followed by rinsing with one liter of water. The active fractions collected with a linearly increasing NaCl concentration gradient from 0 to 0.6 M were combined and concentrated in vacuo. After desalted by Sephadex LH-20 column chromatography (40 i.d.  $\times$  750 mm, 50% methanol), 2.82 g of a crude powder was obtained and dissolved in a small volume of water. The solution was charged

on a column of DEAE-Sephadex A-25 (OH<sup>-</sup> form, 40 i.d.  $\times$  490 mm), and the elution was carried out with a linearly increasing NaCl concentration gradient from 0.05 M to 0.15 M. The active fractions were combined and desalted by Sephadex LH-20 column chromatography with water. The active eluate fractions were charged on Dowex 50 w  $\times$  8 (H<sup>+</sup> form, 20 i.d.  $\times$  200 mm) and eluted with 3% NH<sub>4</sub>OH. Concentration of the eluate to dryness under reduced pressure afforded 272 mg of 1.

The physico-chemical properties of 1 were as follows: MP 205°C (dec., Na salt);  $[\alpha]_D^{27} - 24.0^\circ$  (*c* 1, H<sub>2</sub>O). The molecular formula of 1 was determined to be C<sub>6</sub>H<sub>8</sub>N<sub>2</sub>O<sub>4</sub> by HRFAB-MS ((M – H)<sup>-</sup>, *m/z* 171.0412,  $\Delta$  + 0.6 mmu); IR v<sub>max</sub><sup>KBr</sup> 3400 (br), 3200 (br), 2250, 1710 (sh), 1630, 1580, 1400; <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  2.47 (1H, dd, *J*=15.3, 5.1 Hz, y-H), 2.54 (1H, dd, *J*=15.3, 10.3 Hz, y-H), 3.36 (1H, dt, *J*=10.3, 5 Hz,  $\beta$ -H), 3.59 (1H, d, *J*=4.8 Hz,  $\alpha$ -H); <sup>13</sup>C NMR (100 MHz, DEPT, D<sub>2</sub>O)  $\delta$  34.7 (CH), 36.7 (CH<sub>2</sub>), 57.2 (CH), 123.0 (C=N), 178.0 (C=O), 178.5 (C=O); TLC SiO<sub>2</sub> (E. Merck, No. 5715): Rf 0.23 (BuOH-AcOH-H<sub>2</sub>O, 3:1:1); detection: ninhydrin.

The IR spectrum of 1 suggested the presence of a carboxylate (1580 and 1400 cm<sup>-1</sup>). The <sup>1</sup>H NMR spectrum revealed a partial structure of -CH-CH-CH<sub>2</sub>- and the 4 protons which were not observed in the spectrum were attributed to exchangeable protons of the carboxylic acid and primary amino groups. *p*-Nitrobenzyloxycarbonylation of 1 (Cbz(NO<sub>2</sub>)-Cl, NaHCO<sub>3</sub>, in 50% CH<sub>3</sub>CN, 3 hours) gave the mono Cbz(NO<sub>2</sub>)-derivative (2, FAB-MS m/z 350 (M-H)<sup>-</sup>). In the <sup>1</sup>H NMR spectrum of 2, one of the methine protons of 1 ( $\delta$ 3.59) was downfield-shifted to  $\delta$  4.42. Based on the <sup>13</sup>C chemical shifts of its carbon signals, 1 was deduced to be  $\beta$ -substituted glutamic acid. In

Fig. 1. Structures of  $\beta$ -cyanoglutamic acid (1) and its *p*-nitrobenzyloxycarbonyl derivative (2).



Correspondence should be addressed to JUN OKUMURA, Bristol-Myers Squibb Research Institute, 2-9-3 Shimomeguro, Meguro-ku, Tokyo 153, Japan.

| Test organism                      | MIC (µg/ml) |             |              |                |
|------------------------------------|-------------|-------------|--------------|----------------|
|                                    | 1           | Cispentacin | Ketoconazole | Amphotericin B |
| Saccharomyces cerevisiae ATCC 9763 | >100        | > 20        | 50           | 0.4            |
| Candida albicans IAM 4888          | 25          | 10          | 25           | 0.2            |
| C. albicans A9540                  | 6.3         | 20          | 25           | 0.2            |
| C. albicans ATCC 32354 (B311)      | 0.8         | 5           | 50           | 0.2            |
| C. albicans 83-2-14                | 0.8         | 5           | 25           | 0.2            |
| C. tropicalis 85-5                 | >100        | > 20        | 25           | 0.4            |
| C. tropicalis IFO 10241            | >100        | > 20        | 50           | 0.2            |
| Cryptococcus neoformans D 49       | >100        | > 20        | 25           | 0.2            |
| C. neoformans IAM 4514             | >100        | > 20        | 50           | 0.2            |
| Aspergillus fumigatus IAM 2034     | >100        | > 20        | 3.1          | 0.2            |

Table 1. Comparative antifungal activities of  $\beta$ -cyanoglutamic acid (1) and other antifungal agents.

Table 2. Effects of nitrogen sources on the antifungal activities of  $\beta$ -cyanoglutamic acid (1) and cispentacin.

| Nitrogen source   | MIC (µg/ml) |             |  |
|-------------------|-------------|-------------|--|
| (4 тм)            | 1           | Cispentacin |  |
| Ammonium chloride | >100        | 50          |  |
| DL-Aminobutyrate  | 6.3         | >100        |  |
| y-Aminobutyrate   | 6.3         | 50          |  |
| L-Alanine         | 12.5        | 12.5        |  |
| L-Arginine        | >100        | 12.5        |  |
| L-Asparagine      | >100        | 25          |  |
| L-Aspartic acid   | >100        | 6.3         |  |
| L-Glutamine       | >100        | 25          |  |
| L-Glutamic acid   | >100        | 25          |  |
| L-Isoleucine      | 1.6         | 12.5        |  |
| L-Lysine          | 6.3         | 3.1         |  |
| L-Methionine      | 0.8         | 3.1         |  |
| L-Phenylalanine   | 6.3         | 3.1         |  |
| L-Proline         | >100        | 100         |  |

addition, the presence of a cyano group in 1 was indicated by <sup>13</sup>C NMR ( $\delta$  123.0) and IR (2250 cm<sup>-1</sup>). Thus 1 was concluded to be  $\beta$ -cyanoglutamic acid. The stereochemistry of 1 is under study.

The comparative antifungal activities of 1, cispentacin, ketoconazole and amphotericin B were studied by the liquid micro-dilution method in Yeast Nitrogen Base (Difco, Cat. No. 0392-15) plus glucose medium (1% glucose, pH 7.0) after 24-hour incubation at  $37^{\circ}$ C. The inoculum size was  $10^{5}$  cells/ml. Table 1 shows that 1 is specifically active against some *C. albicans* strains and has an activity profile similar to cispentacin<sup>1,2)</sup>.

As an initial approach to the mode-of-action study, the effects of 4 mM nitrogen sources on the antifungal activities of 1 and cispentacin were examined by the liquid micro-dilution method using *C. albicans* A9540 in Yeast Nitrogen Base (Difco, Cat. No. 0335-15) plus glucose medium (without amino acid and ammonium sulfate). After 40 hours incubation at  $37^{\circ}$ C, MIC's of 1 and cispentacin were read for each nitrogen source (Table 2). As expected from the structural relatedness, the results in Table 2 clearly indicate that the antifungal activity of 1 is significantly antagonized by glutamic acid and related amino acids such as aspartic acid, glutamine, asparagine and proline.

## References

- KONISHI, M.; M. NISHIO, K. SAITOH, T. MIYAKI, T. OKI & H. KAWAGUCHI: Cispentacin, a new antifungal antibiotic. I. Production, isolation, physicochemical properties and structure. J. Antibiotics 42: 1749~1755, 1989
- OKI, T.; M. HIRANO, K. TOMATSU, K. NUMATA & H. KAMEI: Cispentacin, a new antifungal antibiotic. II. *In vitro* and *in vivo* antifungal activities. J. Antibiotics 42: 1756~1762, 1989